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Abstract

Owing to the growing concerns about privacy and regulatory compliance, it is desirable
to regulate the output of generative models. To that end, the objective of this work is to
prevent the generation of outputs containing undesired features from a pre-trained Gener-
ative Adversarial Network (GAN) where the underlying training data set is inaccessible.
Our approach is inspired by the observation that the parameter space of GANs exhibits
meaningful directions that can be leveraged to suppress specific undesired features. How-
ever, such directions usually result in the degradation of the quality of generated samples.
Our proposed two-stage method, known as ‘Adapt-then-Unlearn,’ excels at unlearning
such undesirable features while also maintaining the quality of generated samples. In the
initial stage, we adapt a pre-trained GAN on a set of negative samples (containing unde-
sired features) provided by the user. Subsequently, we train the original pre-trained GAN
using positive samples, along with a repulsion regularizer. This regularizer encourages the
learned model parameters to move away from the parameters of the adapted model (first
stage) while not degrading the generation quality. We provide theoretical insights into
the proposed method. To the best of our knowledge, our approach stands as the first
method addressing unlearning within the realm of high-fidelity GANs (such as StyleGAN).
We validate the effectiveness of our method through comprehensive experiments, encom-
passing both class-level unlearning on the MNIST and AFHQ dataset and feature-level
unlearning tasks on the CelebA-HQ dataset. Our code and implementation is available at:
https://github.com/atriguha/Adapt_Unlearn.

1 Introduction

1.1 Unlearning

Recent advancements in deep generative models such as Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014; Arjovsky et al., 2017; Karras et al., 2018b;a; 2020) and Diffusion models (Ho et al., 2020;
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Song & Ermon, 2019; Song et al., 2021) have showcased remarkable performance in diverse tasks, from gen-
erating high-fidelity images (Karras et al., 2018a; 2020; 2021) to text-to-image translations (Ramesh et al.,
2021; 2022; Rombach et al., 2022). Consequently, these models find application in various fields, includ-
ing but not limited to medical imaging (Celard et al., 2023; Varoquaux & Cheplygina, 2022; Tiwary et al.,
2024a), remote sensing (Ball et al., 2017; Adegun et al., 2023), hyperspectral imagery (Jia et al., 2021; Wang
et al., 2023), and many others (Choudhary et al., 2022; Yang & Xu, 2021; Liu et al., 2021; Tiwary et al.,
2024b). However, the extensive incorporation of data with possible undesired features or inherent biases
cause these models to generate violent, racial, or explicit content which poses significant concerns (Tommasi
et al., 2017). Thus, these models are subject to regulatory measures (Voigt & dem Bussche, 2017; Gold-
man, 2020). Identifying and eliminating these undesired features from the model’s knowledge representation
poses a challenging task. The framework of Machine Unlearning (Xu et al., 2020; Nguyen et al., 2022b)
tries to solve this problem by removing specific training data points containing undesired feature from the
pre-trained model. Specifically, machine unlearning refers to the task of forgetting the learned information
(Sekhari et al., 2021; Ma et al., 2022; Ye et al., 2022; Cao & Yang, 2015; Golatkar et al., 2021; 2020a; Ginart
et al., 2019; Golatkar et al., 2020b), or erasing the influence of specific data subset of the training dataset
from a trained model in response to a user request (Wu et al., 2020a; Guo et al., 2020; Graves et al., 2021;
Wu et al., 2022; 2020b; Chourasia & Shah, 2023).

The task of unlearning can be challenging because we aim to ‘unlearn’ a specific undesired feature without
negatively impacting the previously acquired knowledge. In other words, unlearning could lead to Catas-
trophic Forgetting (Ginart et al., 2019; Nguyen et al., 2022a; Golatkar et al., 2020b) which would significantly
deteriorate the performance of the model. Further, the level of difficulty faced in the process of unlearning
may vary depending on the specific features of the data that one is required to unlearn. For example, un-
learning a particular class (e.g. class of digit ‘9’ in MNIST) could be relatively easier than unlearning a more
subtle feature (e.g. beard feature in CelebA). This is because the classes in MNIST are quite distinct and
don’t necessarily share correlated features. Whereas, in the CelebA (Liu et al., 2015) dataset, the feature of
having a beard is closely linked to the concept of gender. So, unlearning this subtle feature while retaining
other correlated features such as gender, poses an increasingly difficult challenge. It is important to mention
that re-training the model from scratch without the undesired input data is not feasible in this setting due
unavailability of the training dataset.

1.2 Motivation and Contribution

In this work, we try to solve the problem of unlearning undesired feature in pre-trained generative adversarial
networks (GANs) without having access to the training data used for pre-training the GAN. We operate under
the feedback-based unlearning framework, where we start with a pre-trained GAN. A user is given a set of
generated samples from this GAN. The user chooses a subset of generated samples and identifies them as
‘undesirable’ (negative samples). The feedback-based approach is similar to RLHF in LLMs or human-in-
loop settings in general (Ziegler et al., 2019; Christiano et al., 2017; Lambert et al., 2022). The objective of
the process of unlearning is to prevent the generation of undesirable characteristics, as identified by the user.
We propose to unlearn the undesired features by following a two-step approach. In the first step, we adapt
the pre-trained generator to the undesired features by using the samples marked as undesired by the user
(negative samples). This ensures that the ‘adapted’ generator exclusively generates samples that possess the
undesired features. In the next step, we unlearn the undesired features from the original GAN by using
the samples that weren’t marked as undesired by the user (positive samples). While unlearning, we add
a repulsion loss that encourages the parameters of the generator to stay away from the parameters of the
adapted generator (obtained from first step) while also making sure that the quality of generated samples does
not deteriorate. We provide theoretical justification for the proposed method by using a bayesian framework.
Particularly, we show that the proposed method leads to contrastive-divergence kind of objective desired for
unlearning. We call the proposed two-stage process ‘Adapt-then-Unlearn’. An overview of the proposed
method is shown in figure 1 (a).

Our approach hinges in realizing interpretable and meaningful directions within the parameter space of
a pre-trained GAN generator, as discussed in (Cherepkov et al., 2021). In particular, the first stage of
the proposed method leads to adapted parameters that exclusively generate negative samples. While the
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Figure 1: (a) Block diagram of the proposed method: Stage-1: Negative Adaptation of the GAN to negative
samples received from user feedback and Stage-2: Unlearning of the original GAN using the positive samples
with a repulsion loss. (b) Illustrating linear interpolation and extrapolation in parameter space for unlearning
undesired features. We observe that in the extrapolation region, undesired features are suppressed, but the
quality of generated samples deteriorates. (c) An example of results obtained using our method on Mixture
of Gaussian (MoG) dataset, where we unlearn two centers provided in negative samples.

parameters of the original pre-trained generator generate both positive as well as negative samples. Hence,
the difference between the parameters of adapted generator and the paramters of original generator can be
interpreted as the direction in parameter space that leads to a decrease in the generation of negative samples.
Given this, it is sensible to move away from the original parameters in this direction to further reduce the
generation of negative samples. This observation is shown in figure 1 (b). However, it’s worth noting that
such extrapolation doesn’t ensure the preservation of other image features’ quality. In fact, deviations too
far from the original parameters may hamper the smoothness of the latent space, potentially leading to a
deterioration in the overall generation quality (see last columns of figure 1 (b)). Inspired by this observation,
during unlearning stage, we propose to train the generator using adversarial loss while encouraging the
generator parameters to be away from the parameters of the adapted generator by employing a repulsion
regularization.

We provide a visual illustration of the proposed method on Mixture of Gaussian (MoG) dataset with eight
centers in figure 1 (c). The first column shows the original training dataset and the samples generated by the
pre-trained GAN. The second column shows the negative samples provided during feedback and the samples
generated by the adapted generator. We can see that the adapted generator exclusively generates samples
from the negative modes of MoG. Lastly, in the third column, we see the positive samples and the samples
generated after unlearning the negative modes. We clearly observe that after unlearning (via the proposed
method), the generator unlearns the negative modes and generates samples from the rest of the modes. This
gives a proof-of-concept for the proposed method.

We summarize our contribution as follows:

• We introduce a two-stage approach for machine unlearning in GANs. In the first stage, our method
adapts the pre-trained GAN to the negative samples. In the second stage, we train the GAN using
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a repulsion loss, ensuring that the generator’s parameters diverge from those of the adapted GAN
in stage 1.

• By design, our method can operate in practical few-shot settings where the user provides a very
small amount of negative samples.

• We provide theoretical justification for the proposed method by showing that the proposed regular-
ization leads to contrastive-divergence kind of objectives appropriate for unlearning.

• The proposed method is thoroughly tested on multiple datasets, considering various types of un-
learning scenarios such as class-level unlearning and feature-level unlearning. Throughout these
tests, we empirically observe that the quality of the generated samples is not compromised.

2 Related Work

2.1 Machine Unlearning

Unlearning can be naively done by removing the unwanted data subset from the training dataset and then
retraining the model from scratch. However, retraining is computationally costly and becomes impossible
if the unlearning request comes recursively for single data points. The task of recursively ’unlearning’ i.e.
removing information of a single data point in an online manner (also known as decremental learning) for
the SVM algorithm was introduced in (Cauwenberghs & Poggio, 2000). However, when multiple data points
are added or removed, these algorithms become slow because they need to be applied to each data point
individually. To address this, (Karasuyama & Takeuchi, 2009) introduced a newer type of SVM training
algorithm that can efficiently update an SVM model when multiple data points are added or removed simul-
taneously. Later, inspired by the problem of protecting user privacy (Cao & Yang, 2015) developed efficient
ways to delete data from certain statistical query algorithms and coined the term “machine unlearning”. The
works of (Ginart et al., 2019) extended the idea of unlearning to more complicated algorithms such k-means
clustering and also proposed the first definition of effective data deletion that can be applied to randomized
algorithms, in terms of statistical indistinguishability. Depending upon this statistical indistinguishability
criteria machine unlearning processes are widely classified into exact unlearning (Ginart et al., 2019; Brophy
& Lowd, 2021) and approximate unlearning methods (Neel et al., 2021; Nguyen et al., 2020). The goal of
exact unlearning is to exactly match the parameter distributions of the unlearned model and the retrained
model where as, in approximate unlearning, the distributions of the unlearned and retrained model’s param-
eters are close to some small multiplicative and additive terms (Neel et al., 2021). To extend the idea of
unlearning or efficient data deletion for non-convex models such as deep neural networks (Golatkar et al.,
2020b) proposed a scrubbing mechanism for approximate unlearning in deep neural networks. A more ef-
ficient method of unlearning in deep networks is proposed by (Goel et al., 2022) where the initial layers of
deep networks are frozen while the last few layers are finetuned on the filtered dataset. Further to achieve
the goal of exact unlearning (Jia et al., 2023) exploit the model sparsification technique via weight pruning.
Even though all of these methods achieve unlearning in supervised deep networks, the generalization of these
methods for state-of-the-art high-fidelity GANs is unexplored.

Few methods like cascaded unlearning (Sun et al., 2023) and data redaction (Kong & Chaudhuri, 2023)
try to prevent generation of undesired features in GANs, however, their methods operate primarily on
very primitive DC-GAN as opposed to high-fidelity GANs like StyleGAN which is the focus of this work.
While Sun et al. (2023) also show result on StyleGAN, there are several significant differences compared
to the proposed method. First, there is a fundamental difference in the unlearning setting between Sun
et al. (2023) and our method. To reduce the generation of undesired samples, Sun et al. (2023) proposes
to forget undesired samples from the training dataset. Specifically, they assume access to samples from
the training dataset. This is somewhat restrictive since users typically don’t have access to the training
data (Chundawat1 et al., 2023; Graves et al., 2021). Further, in terms of methodology, Sun et al. (2023)
propose to patch the latent space of the GAN with representative samples. They suggest various strategies
for generating these representative samples, such as using ‘average samples’ or ‘other class samples’ (cf.
Section 4.3 of their paper). However, imposing such constraints on the latent space may lead to suboptimal
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latent-space semantics, potentially harming the quality of generated images. To address this, we avoid
manipulating the latent space directly. Instead, we focus on parameter-space semantics, where we identify
generator parameters that produce undesired samples (Stage-1: Negative Adaptation), and then retrain the
GAN to avoid these parameters (Stage-2: Unlearning Phase). Additionally, since the latent space naturally
adjusts based on changes in the parameter space (as shown in figure 1 (b)), we find it sufficient to focus
on parameter-space semantics alone, as it automatically handles latent-space semantics as well. To the best
of our knowledge, these insights into parameter-space semantics have not been explored in the context of
unlearning, making our approach novel.

2.2 Few-Shot Generative Domain Adaptation

The area of few-shot generative domain adaptation deals with the problem where a pre-trained generative
model is adapted to a target domain using very few samples. A general strategy to do this is to fine-tune
the model on target data using appropriate regularizers. Eg. Wang et al. (2018) observed that using a
single pre-trained GAN for fine-tuning is good enough for adaptation. However, due to the limited amount
of target data, this could lead to mode collapse, hence Noguchi & Harada (2019) proposed to fine-tune
only the batch statistics of the model. Although, such a strategy can be very restrictive in practice. To
overcome this issue, Wang et al. (2020) proposed to append a ‘miner’ network before the generator. They
propose a two-stage framework, where the miner network is first trained to transform the input latent space
to capture the target domain distribution then the whole pipeline is re-trained using target data. While
these fine-tuning based methods give equal weightage to all the parameters of the generator, Li et al. (2020)
proposed to fine-tune the parameter using Elastic Weight Consolidation (EWC). Particularly, EWC is used
to penalize large changes in important parameters. This importance is quantified using Fisher-information
while adapting the pre-trained GAN. Mo et al. (2020) showed that fine-tuning a GAN by freezing the lower
layers of discriminator is good enough in few-shot setting. Recently, a string of work (Ojha et al., 2021; Xiao
et al., 2022; Lee et al., 2021) focuses on few-shot adaptation by preserving the cross-domain correspondence.
Lastly, Mondal et al. (2022) suggested an inference-time optimization approach where a they prepend a
latent-learner, and the latent-learner is optimized every time a new set of images are to be generated from
target domain.

As mentioned earlier, our approach involves an adaptation stage, where we adapt the pre-trained GAN to
the negative samples provided by the user. In practice, the amount of negative samples provided by the user
is very less hence such an adaptation falls under the category of few-shot generative domain adaptation.
Hence, we make use of EWC (Li et al., 2020) for this adaptation phase (cf. Section 3.2 for details).

3 Proposed Methodology

3.1 Problem Formulation and Method Overview

Consider the generator GθG
of a pre-trained GAN with parameters θG and an implicit generator distribution

pG(y). The GAN is trained using a dataset D = ¶xi♢
♣D♣
i=1, where xi

iid
∼ pdata(x). Using the feedback-

based framework (Moon et al., 2023), we obtain a few negative and positive samples, marked by the user.
Specifically, the user is provided with n samples S = ¶yi♢

n
i=1 where yi are the generated samples from

the pre-trained GAN, i.e., yi
iid
∼ pG(y). The user identifies a subset of these samples Sn = ¶yi♢i∈sn , as

negative samples or samples with undesired features, and the rest of the samples Sp = ¶yi♢i∈sp as positive
samples or samples that don’t possess the undesired features. Here, sp and sn are index sets such that

sp ∪ sn = ¶1, 2, . . . , n♢ and sp ∩ sn = ϕ. Formally, ¶yi♢i∈sn

iid
∼ pN (y) and ¶yi♢i∈sp

iid
∼ pG\N (y), where, pN (y)

is the implicit generator distribution on negative samples and pG\N (y) is the implicit generator distribution
after removing support of negative samples. Given this, the goal of unlearning is to learn the parameters θP

such that the generator GθP
generates only positive samples. In other words, the parameters θP should lead

to unlearning of the undesired features.

Our approach involves two stages: In Stage 1, we adapt the pre-trained generator GθG
on the user-marked

negative samples. This step gives us the parameters θN such that GθN
generates only negative samples. In
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Stage 2, we unlearn the undesired features by training the original generator GθG
on positive samples using

the usual adversarial loss while adding an additional regularization term that makes sure that the learned
parameter is far from θN . We call this regularization term repulsion loss as it repels the learned parameters
from θN .

3.2 Stage-1: Negative Adaptation

The aim of the first stage of our method is to obtain parameter θN such that the generator GθN
only generates

negative samples (Sn). However, one thing to note here is that the number of negative samples marked by
the user

(

♣Sn♣
)

might be much less in number (of the order of tens or a few hundred). Directly adapting a pre-
trained GAN with a much smaller amount of samples could lead to catastrophic forgetting (McClelland et al.,
1995; McCloskey & Cohen, 1989). To address this issue, we employ a few-shot GAN adaptation technique,
namely, Elastic Weight Consolidation (EWC) (Li et al., 2020), mainly because of its simplicity and ease of
implementation. EWC-based adaptation relies on the simple observation that the ‘rate of change’ of weights
is different for different layers. Further, this ‘rate of change’ is observed to be inversely proportional to the
Fisher information, F of the corresponding weights, which can used for penalizing changes in weights in
different layers.

In our context, we want to adapt the pre-trained GAN on the negative samples. Hence, the optimal parameter
θN for the adapted GAN can be obtained by solving the following optimization problem:

θN , ϕN = arg min
θ

max
φ
Ladv + γLadapt (1)

where, Ladv = E
x∼pN (x)

[log Dφ(x)] + E
z∼pZ (z)

[log(1−Dφ(Gθ(z)))] (2)

Ladapt = λ
∑

i

Fi(θi − θG,i), F = E



−
∂2

∂θ2
G

LθG
(Sn)



(3)

Here, pZ(z) is the standard Gaussian prior, and LθG
(Sn) refers to the log-likelihood function for the samples

Sn generated by the GAN with parameters θG. Specifically, LθG
(Sn) = log pθG

(Sn) which is the log-likelihood
of the negative samples under the generator’s distribution with parameter θG. This term can be estimated by
calculating the binary cross-entropy of the discriminator’s output, Dφ(Sn), as shown in (Li et al., 2020). In
practice, we train multiple instances of the generator to obtain multiple θN . Specifically, given the negative
samples Sn, we adapt the pre-trained GAN k times to obtain ¶θj

N♢
k
j=1.

3.3 Stage-2: Unlearning

In the second stage of our method, the actual unlearning of undesired features takes place. In particular,
this stage is motivated by the observation that there exist meaningful directions in the parameter space of
the generator, shown in figure 1 (b). However, such extrapolation-based schemes could lead to degradation
in the quality of generated images.

Nevertheless, the above observation indicates that traversing away from θN helps us to erase or unlearn
the undesired features. Therefore, we ask the following question: Can we transverse in the parameter
space of a generator in such a way the parameters remain far from θN while making sure that
the quality of generated samples doesn’t degrade? To solve this problem, we make use of the positive
samples Sp provided by the user. Particularly, we propose to train the given GAN on the positive samples
while incorporating a repulsion loss component that ‘repels’ or keeps the learned parameters away from θN .
Mathematically, we obtain the parameters after unlearning θP by solving the following optimization problem:

θP , ϕP = arg min
θ

max
φ
L

′

adv + γLrepulsion (4)

where, L
′

adv = E
x∼pG\N (x)

[log Dφ(x)] + E
z∼pZ(z)

[log(1−Dφ(Gθ(z)))] (5)
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Here, Lrepulsion is the repulsion loss. The repulsion loss is chosen such that it encourages the learned

parameters to be far from θN obtained from Stage-1. Further, L
′

adv encourages the parameters to capture
the desired distribution pG\N (x). Hence, the combination of these two terms makes sure that we transverse
in the parameter space maintaining the quality of generated samples while unlearning the undesired features
as well.

We emphasize that L
′

adv is different from Ladv used in Stage-1. Specifically, the two adversarial terms serve
different purposes: (i) Ladv is utilized during the Negative Adaptation Phase (Stage-1) to adapt the original
GAN to the negative samples (Sn), and (ii) L

′

adv is applied during the Unlearning Phase (Stage-2) to retrain
the original GAN on positive samples (Sp), which are the samples not marked as undesired.

Note: Our method requires users to identify or annotate negative samples, i.e., those containing undesired
features. This annotation serves to adapt the GAN to negative samples during the Negative Adaptation
phase and subsequently retrain it on positive samples during the Unlearning phase. While human feedback is
one approach for obtaining these samples, other methods, such as curating datasets of positive and negative
samples, can also be employed. However, curating such datasets can be challenging, especially when the
feature, concept, or class to be unlearned is subtle or complex and is not readily annotated in standard
datasets. In such scenarios, users may need to create a custom dataset. By contrast, our current approach
leverages human feedback to annotate readily available samples generated by the GAN, reducing the need for
external dataset creation. Nonetheless, if a pre-curated dataset of positive and negative samples is available,
our method can be easily adapted to use it. The GAN can be trained on this dataset to obtain the negative
parameters θN , which can then be utilized in the Unlearning phase. We demonstrate few results using such
approach in Appendix.

Algorithm: Adapt-then-Unlearn

Stage-1: Negative Adaptation Stage-2: Unlearning
Required: Pre-trained parameters (θG, ϕD), Neg-
ative samples (Sn), Number of adapted models (k).
Initialize: j ← 0

Required: Pre-trained parameters (θG, ϕD), Posi-
tive samples (Sp), Adapted models (θN = ¶θj

N♢
k
j=1).

Initialize: θP ← θG, ϕP ← ϕD

1: while j ≤ k do
2: θ ← θG, ϕ← ϕD

3: repeat
4: Sample x ∼ Sn and z ∼ N (0, I)
5: Ladv ← log Dφ(x) + log (1−Dφ(Gθ(z)))
6: Ladapt ← λ

∑

i Fi(θi − θG,i)
7: θ ← θ − η∇θ(Ladv + Ladapt)
8: until convergence
9: θ

j
N ← θ

10: j ← j + 1
11: end while

1: repeat
2: Sample x ∼ Sp and z ∼ N (0, I)
3: L′

adv ← log Dφ(x) + log (1−Dφ(Gθ(z)))
4: Choose Lrepulsion from Eq. 6
5: θ ← θ − η∇θ(L′

adv + Lrepulsion)
6: until convergence

3.4 Choice of Repulsion Loss

As mentioned above, the repulsion loss should encourage the learned parameter to traverse away from θN

obtained from the negative adaptation stage. Here, we note that the repulsion term operates in parameter-
space of the generator. There is a lineage of research work in Bayesian learning called Deep Ensembles, where
multiple MAP estimates of a network are used to approximate full-data posterior (Levin et al., 1990; Hansen
& Salamon, 1990; Breiman, 1996; Lakshminarayanan et al., 2017; Ovadia et al., 2019; Wilson & Izmailov,
2020; D’Angelo & Fortuin, 2021). However, if the members of an ensemble are not diverse enough, then the
posterior approximation might not capture the multi-modal nature of full-data posterior. As a consequence,
there are several methods proposed to increase the diversity of the members of the ensemble (Huang et al.,
2016; Von Oswald et al., 2020; D’Angelo & Fortuin, 2021; Wenzel et al., 2020; D’Angelo & Fortuin, 2021).
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Inspired by these developments, we make use of the technique proposed in D’Angelo & Fortuin (2021) where
the members of an ensemble interact with each other through a repulsive force that encourages diversity in
the ensemble. Particularly, we explore three choices for repulsion loss:

Lrepulsion =











LIL2
repulsion = 1

♣♣θ−θN ♣♣2

2

(Inverse ℓ2 loss)

LNL2
repulsion = −♣♣θ − θN ♣♣

2
2 (Negative ℓ2 loss)

LEL2
repulsion = exp(−α♣♣θ − θN ♣♣

2
2) (Exponential negative ℓ2 loss)

(6)

It can be seen that minimization of all of these choices will force θ to be away from θN , consequently serving
our purpose. In fact, in general, one can use any function of ∥θ − θN∥

2
2 that has a global maxima at θN

as a choice for repulsion loss. In this work, we work with the above mentioned choices. An algorithmic
overview of Stage-1 Negative Adaptation is presented in Algorithms 11 and Stage-2 Unlearning is presented
in Algorithm 6

4 Theoretical Discussion

In this section, we present theoretical insights into the proposed method. Inspired by the work in Nguyen et al.
(2020), we operate in Bayesian setting for these claims and make use of widely used Laplace approximation
around relevant parameters. Specifically, we demonstrate that for an optimal discriminator, the proposed
regularization term combined with the adversarial term results in a contrastive divergence-like objective (a
difference of two divergence terms). This encourages the generator to capture the implicit distribution of the
pre-trained generator without the support of negative samples while maximizing the divergence between the
parameter distribution of the post-unlearning generator and that of the generator which produces negative
samples (Theorem 1). This result is shown in . Further, we show the relation between the parameter space
divergence and data space divergence (Claim 1).

For this, let Θ denote the parameter space of a generator network. Let θG ∈ Θ be the parameter of
a pre-trained generator with an implicit distribution pX

G(x) over the data space1. Further, consider two
distributions pΘ

N (θ) and pΘ
U (θ) over Θ, where the latter is a learnable distribution and the former is such

that for z ∼ pZ(z) the corresponding generated samples from manifested generator Gθ(z) ∼ pX
N (x). In other

words, samples from pΘ
N (θ) lead to the generation of negative samples.

Theorem 1. Consider the distributions pΘ
N (θ) and pΘ

U (θ) to be Gaussian, i.e., pΘ
N (θ) =

1
♣2πΣ♣d/2

exp
[

1
2 (θ − θN )T Σ−1(θ − θN )

]

and pΘ
U (θ) = 1

♣2πΣ♣d/2
exp

[

1
2 (θ − θP )T Σ−1(θ − θP )

]

, where Σ = I,

θN and θP are the mean parameters and θP is learnable. Then statements (1 - 3) hold for the following
optimization problem:

min
θP

max
φ

E
x∼pG\N (x)

[log Dφ(x)] + E
z∼pZ

θ∼pU

[log(1−Dφ(Gθ(z)))] + Lrepulsion (7)

1. for Lrepulsion = LIL2

repulsion, solving Eq. 7 leads to pΘ
U that minimizes

DJSD(pX
G\N ♣♣ p

X
U ) +

[

DKL(pΘ
U ♣♣ p

Θ
N )

]−1

2. for Lrepulsion = LNL2

repulsion, solving Eq. 7 leads to pΘ
U that minimizes

DJSD(pX
G\N ♣♣ p

X
U )−DKL(pΘ

U ♣♣ p
Θ
N )

3. for Lrepulsion = LEL2

repulsion, solving Eq. 7 leads to pΘ
U that minimizes

DJSD(pX
G\N ♣♣ p

X
U )−DH(pΘ

U ♣♣ p
Θ
N )

1For convenience, we use superscript X and Θ to denote a distribution in data space and parameter space respectively. We
use the data space distribution from previous section as it is with a superscript X for this distinction.
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where, DKL(· ♣♣ ·) and DH(· ♣♣ ·) denote KL divergence and Hellinger divergence, and Gθ(z) ∼ pX
U (·) denotes

the implicit distribution of generator when z ∼ pZ and θ ∼ pΘ
U .

The proof for the aforementioned result is relatively straightforward; for the sake of completeness, we include
the proof in the Appendix. It is evident from the above result that the unlearning phase of the proposed
method, assuming a Gaussian parameter distribution, achieves two objectives: (a) minimizing the Jensen-
Shannon Divergence between the learned data distribution (pX

U ) and the implicit generator distribution after
removing the support of negative samples (pX

G\N
), and (b) maximizing a suitable divergence measure between

the parameter distribution during unlearning (pΘ
U ) and the parameter distribution that leads to the generation

of negative samples (pΘ
N ). While (a) is relatively straightforward, (b) provides valuable insights into the effect

of the regularization term, which is particularly interesting. The regularization term ensures that the current
parameter distribution moves away from the one responsible for generating undesired features, effectively
aligning with the primary goal of unlearning. Furthermore, this behavior has been shown to be crucial for
unlearning in Bayesian settings, as demonstrated in Nguyen et al. (2020). Essentially, this aligns with the
desired outcome of unlearning, ensuring that the model captures only the desired support of the distribution.

An interesting observation from the above result is that utilizing LNL2
repulsion or LEL2

repulsion results in an objective
akin to contrastive divergence, i.e., it entails the difference between two divergences. However, these two
divergence metrics operate on distributions in distinct spaces: the first divergence operates in the data space,
while the second operates in parameter space. This prompts a natural question: how does the divergence
in parameter space relate to the corresponding distribution in data space? We address this question in the
following claim.

Claim 1. For any general f-divergence Df (· ♣ ·), and a given latent vector, the following inequality holds:

DJSD(pX
G\N ♣♣ p

X
U )−Df (pΘ

U ♣♣ p
Θ
N ) ≤ DJSD(pX

G\N ♣♣ p
X
U )−Df (pX

U ♣♣ p
X
N ) (8)

Above result relies on simple application of data-processing inequality. The proof is provided in Appendix.
Since, KL and Hellinger divergence are both instances of f -divergence, the above result holds for Statements
2 and 3 of Theorem 1. Hence, we see that the while using LNL2

repulsion or LEL2
repulsion, the corresponding data

space objectives act as upper bounds to the parameter space objectives. With these insights, we end the
theoretical discussion.

5 Experiments and Results

5.1 Datasets

An unlearning algorithm should ensure that the generator should not generate images containing the unde-
sired (or unlearnt) feature. For our experiments, we consider two types of unlearning settings: (i) Class-level
unlearning and (ii) Feature-level unlearning. The primary difference between the two type of unlearning
lies in the nature of the associations. In feature-level unlearning, an image can exhibit multiple features
simultaneously, whereas in class-level unlearning, an image from one class cannot belong to any other class.
In other words, if each feature is treated as a class, feature-level unlearning allows an image to belong to
multiple classes, while class-level unlearning restricts an image to a single class. For instance, a person with
bangs can be either male or female, but a digit labeled as ‘one’ cannot simultaneously belong to any other
class.

We use MNIST dataset (LeCun et al., 1998) and AFHQ dataset (Choi et al., 2020) for class-level unlearning.
MNIST consists of 60, 000 28 × 28 dimensional black and white images of handwritten digits. For our
experiments, we take three-digit classes: 1, 4, and 8 for unlearning. AFHQ consists of 15, 000 high-quality
animal face images at 512×512 resolution with three categories: cat, dog and wildlife. We unlearn each class
one at a time in our experiments. Similarly, we use CelebA-HQ dataset (Liu et al., 2015) for feature-level
unlearning. CelebA-HQ contains 30, 000 RGB high-quality celebrity face images of dimension 256 × 256.
Here, we unlearn the following subtle features: (a) Bangs, (b) Hats, (c) Bald, and (d) Eyeglasses.
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Figure 2: Results of Unlearning different classes on AFHQ dataset.

5.2 Experimental Details

Training Details: We use one of the state-of-the-art and widely used high-fidelity StyleGAN2 (Karras
et al., 2020) for demonstrating the performance of the proposed method on the tasks mentioned in previous
section. The StyleGAN is trained on the entire MNIST, AFHQ and CelebA-HQ datasets to obtain the
pre-trained GAN from which we desire to unlearn specific features. The training details of StyleGAN2 are
given in Supplementary Section A.

Unlearning Details: In our experiments, we employ a pre-trained classifier as a proxy for human to
obtain user feedback. Specifically, we pre-train the classifier to classify a given image as desired or undesired
(depending upon the feature under consideration). We classify 1, 000 generated images from pre-trained
GAN as positive and negative samples using the pre-trained classifier. The generated samples containing
the undesired features are marked as negative samples and the rest of the images are marked as positive
samples. These samples are then used in Stage-1 and Stage-2 of the proposed method for unlearning as
described in Section 3. We evaluate our result using all the choices of repulsion loss as mentioned in Eq. 6.
For reproducibility, we provide all the hyper-parameters and training details in Supplementary Section A.
The original FID of the GAN after training is as follows- MNIST: 5.4, AFHQ: 8.1, CelebA-HQ: 5.3. We
mention these in caption of each table wherever necessary.

5.3 Baselines and Evaluation Metrics

Baselines: To the best of our knowledge, ours is one of the first works that addresses the problem of
unlearning in high-fidelity generator models such as StyleGAN2. Hence, we evaluate and compare our
method with all the candidates for repulsion loss presented in Eq. 6. Further, we also include the results
with extrapolation in the parameter space as demonstrated in figure 1 (b). We include recent unlearning
baselines tailored for classification, easily adaptable to generative tasks. Specifically, we incorporate EU-k,
CF-k, and ℓ1-sparse (Goel et al., 2022; Jia et al., 2023) for comparison, with detailed information in the
Supplementary section A.4. Additionally, we assess our method against GAN adaptation to positive samples,
utilizing recent generative few-shot adaptation methods like EWC, CDC, and RSSA (Li et al., 2020; Ojha
et al., 2021; Xiao et al., 2022) as baselines. Apart from the above baselines, we also mention the results
obtained from training a GAN from scratch on only desirable data present in the dataset. This model acts
as the gold standard, however, due to unavailability of underlying dataset, this is not practical. Nonetheless,
we mention it in our tables for completeness. We evaluate the performance of each method across three
independent runs and report the result in the form of mean ± std. dev.
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Figure 3: Results of Unlearning different features on CelebA dataset.

Evaluation Metrics: Various metrics have been devised for assessing machine unlearning methods (Xu
et al., 2020). To gauge the effectiveness of our proposed techniques and the baseline methods, we utilize
three fundamental evaluation metrics:

1. Percentage of Un-Learning (PUL): This metric quantifies the extent of unlearning by measuring
the reduction in the number of negative samples generated by the GAN post-unlearning compared

to the pre-unlearning state. PUL is computed as: PUL =
(Sn)θG

−(Sn)θP

(Sn)θG
× 100, where, (Sn)θG

and

(Sn)θP
represent the number of negative samples generated by the original GAN and the GAN

after unlearning respectively. We generate 15,000 random samples from both GANs and employ a
pre-trained classifier (as detailed in Section 5.2) to identify the negative samples. PUL provides a
quantitative measure of the extent of the unlearning algorithm in eliminating the undesired feature
from the GAN.

2. Fréchet Inception Distance (FID): While PUL quantifies the degree of unlearning, it does
not assess the quality of samples generated by the GAN post-unlearning. Hence, we calculate
the FID (Heusel et al., 2017) between the generated samples and the original dataset without the
undesired samples.

3. Retraining FID (Ret-FID): To resemble the retrained GAN, we compute the FID between the
outputs of the GAN after unlearning and the GAN trained from scratch on the dataset obtained
after eliminating undesired features.

Please note that the original dataset is unavailable during the unlearning process. Consequently, the use of
the original dataset is solely for evaluation purposes.

5.4 Unlearning Results

We present our results and observations on MNIST, AFHQ and CelebA-HQ in Table 1, 2, 3 respectively.
We observe that the choice of LEL2

repulsion as repulsion loss provides the highest PUL in most of the cases
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Table 1: PUL (↑), FID (↓), and Ret-FID (↓) after unlearning MNIST classes. FID of pre-trained GAN: 5.4.

Method Class 1 Class 4 Class 8

PUL FID Ret-FID PUL FID Ret-FID PUL FID Ret-FID

Retraining 98.80± 0.09 4.94± 0.04 N/A 98.58± 0.28 5.24± 0.09 N/A 99.72± 0.01 4.80± 0.11 N/A

CF-k 18.60± 2.30 92.88± 0.51 89.05± 0.93 7.71± 0.18 33.61± 0.93 30.76± 0.86 16.03± 0.09 36.67± 1.98 33.14± 0.74
EU-k 31.77± 1.56 15.34± 0.01 14.05± 0.17 17.59± 3.31 8.80± 0.08 7.84± 0.24 21.66± 0.70 8.92± 0.77 7.10± 0.10
ℓ1-Sparse 91.84± 0.55 22.17± 0.14 17.87± 0.42 94.16± 0.06 23.24± 0.59 17.25± 0.22 95.42± 0.01 22.23± 0.05 16.83± 0.13

EWC 90.93± 0.46 7.18± 0.08 5.10± 0.01 82.78± 1.02 9.34± 0.08 5.91± 0.04 92.70± 0.81 9.35± 0.04 6.03± 0.04
CDC 90.70± 0.16 20.85± 0.49 17.51± 1.86 42.39± 0.66 17.82± 1.99 12.39± 2.32 18.86± 0.92 11.18± 2.28 12.38± 3.73
RSSA 38.36± 0.09 12.70± 0.17 13.54± 0.40 71.96± 0.21 25.41± 0.06 19.08± 0.59 79.54± 0.32 34.59± 0.26 25.33± 0.39

Extrapolation 95.10± 0.69 41.39± 1.76 42.98± 0.68 94.50± 0.05 17.90± 0.35 27.81± 0.37 90.90± 0.12 45.79± 0.29 44.30± 0.40

L
NL2
repulsion (Ours) 97.85± 2.25 9.69± 0.07 6.70± 0.25 93.03± 0.70 10.50± 0.34 6.26± 0.12 97.92± 0.67 9.95± 0.17 6.70± 0.18

L
IL2
repulsion (Ours) 92.97± 0.48 13.06± 0.46 16.55± 0.54 90.39± 1.36 15.54± 0.05 8.64± 0.90 98.28 ± 0.55 9.72± 0.31 11.64± 0.46

L
EL2
repulsion (Ours) 99.32 ± 0.43 9.65± 0.21 6.29± 0.18 96.23 ± 0.54 10.24± 0.19 5.80± 0.04 95.22± 0.55 8.89± 0.52 5.68± 0.10

Table 2: PUL (↑), FID (↓), and Ret-FID (↓) after unlearning AFHQ classes. FID of pre-trained GAN: 8.1.

Method Cat Dog Wild

PUL FID Ret-FID PUL FID Ret-FID PUL FID Ret-FID

Retraining 93.37± 0.23 12.45± 0.16 N/A 85.96± 0.21 5.71± 0.43 N/A 88.60± 0.22 15.24± 0.24 N/A

CF-k 15.74± 0.41 42.91± 0.33 37.34± 0.29 13.12± 0.12 64.50± 0.58 65.72± 2.31 16.40± 0.55 35.56± 0.11 34.47± 0.94
EU-k 16.08± 0.28 43.21± 0.25 37.62± 0.42 10.30± 0.13 32.69± 0.23 31.40± 0.36 16.63± 0.84 35.80± 0.39 32.55± 0.14
ℓ1-Sparse 86.25± 1.35 25.73± 0.05 14.96± 0.11 68.21± 0.15 19.54± 0.53 15.10± 0.85 84.05± 0.45 37.63± 0.52 21.80± 0.16

EWC 90.58± 1.54 15.30± 0.98 8.29± 0.04 68.79± 0.08 10.38± 1.08 8.50± 0.35 73.44± 0.16 16.32± 0.08 14.38± 0.01
CDC 28.57± 0.43 59.76± 0.40 49.93± 1.02 9.60± 0.24 47.85± 0.53 46.79± 0.67 6.51± 0.13 42.17± 0.19 36.95± 0.28
RSSA 66.86± 0.22 59.88± 0.35 46.80± 0.62 54.54± 0.36 55.06± 0.20 53.24± 0.34 43.99± 0.72 60.95± 0.45 44.20± 0.32

Extrapolation 90.64± 0.33 45.89± 2.60 38.87± 1.93 82.08± 1.02 25.54± 1.19 24.98± 1.35 84.45± 0.11 45.98± 2.66 41.86± 1.99

L
NL2
repulsion (Ours) 94.28± 0.17 16.29± 0.06 8.93± 1.23 75.33± 0.35 8.62± 0.08 5.96± 0.45 82.82± 0.77 17.69± 0.18 14.89± 0.13

L
IL2
repulsion (Ours) 90.93± 0.51 20.69± 0.04 9.86± 0.08 76.53± 0.51 9.37± 1.06 6.84± 0.10 80.96± 0.18 22.70± 0.11 13.76± 0.12

L
EL2
repulsion (Ours) 95.76 ± 0.25 16.50± 0.12 8.17± 0.14 79.21 ± 0.18 9.31± 0.14 7.13± 0.12 89.09 ± 0.25 19.67± 0.69 14.90± 0.65

Table 3: PUL (↑), FID (↓), and Ret-FID (↓) after unlearning CelebA-HQ features. FID of pre-trained GAN:
5.3.

Method Bangs Hat Bald Eyeglasses

PUL FID Ret-FID PUL FID Ret-FID PUL FID Ret-FID PUL FID Ret-FID

Retraining 84.47± 1.49 7.58± 0.06 N/A 98.65± 0.03 6.35± 0.10 N/A 72.13± 0.07 7.18± 0.08 N/A 58.57± 0.04 6.50± 0.77 N/A

CF-k 18.60± 2.30 9.65± 0.15 7.70± 0.27 15.22± 0.05 9.58± 0.09 7.57± 0.05 48.17± 1.76 9.30± 0.12 7.37± 0.06 16.41± 0.73 9.49± 0.15 6.79± 0.06
EU-k 20.08± 1.35 9.03± 0.23 7.38± 0.06 17.96± 1.54 9.40± 0.21 7.16± 0.05 52.18± 0.53 9.03± 0.06 6.92± 0.05 16.41± 1.33 9.39± 0.04 6.85± 0.85
ℓ1-Sparse 75.78± 1.48 16.20± 0.24 13.77± 0.46 59.01± 1.67 8.61± 0.09 5.66± 0.09 67.26± 0.19 16.27± 0.73 14.14± 0.59 82.30± 1.96 15.95± 0.02 12.36± 0.32

EWC 76.24± 2.14 9.64± 0.05 6.69± 0.03 74.14± 0.78 9.06± 0.22 6.44± 0.08 55.70± 2.57 9.32± 0.07 6.77± 0.04 46.51± 0.57 9.19± 0.04 6.56± 0.01
CDC 83.76± 0.12 34.66± 1.94 24.67± 0.02 85.23± 0.77 23.48± 0.12 17.46± 0.22 90.10± 0.37 26.96± 0.02 17.99± 0.09 91.65± 0.31 36.66± 0.02 30.08± 0.27
RSSA 32.07± 0.58 17.79± 0.02 15.99± 0.08 22.70± 1.47 18.83± 0.08 14.87± 0.16 31.70± 1.89 20.35± 0.34 18.63± 0.01 26.21± 0.17 22.24± 0.16 18.09± 0.02

Extrapolation 89.54± 0.09 11.54± 0.07 11.02± 0.06 94.35± 0.12 12.18± 0.04 10.12± 0.07 94.44± 0.34 23.44± 0.02 26.40± 0.30 92.80± 0.14 23.70± 0.07 19.10± 0.10

L
NL2
repulsion (Ours) 90.41± 0.19 11.92± 0.46 8.69± 0.05 93.99± 1.70 9.60± 0.25 6.44± 0.11 97.13 ± 1.42 14.70± 0.55 9.03± 0.13 83.76± 3.21 12.81± 0.88 7.93± 0.99

L
IL2
repulsion (Ours) 84.05± 1.03 13.09± 0.10 9.07± 0.18 94.00± 0.75 11.31± 0.06 7.25± 0.13 83.51± 2.18 12.94± 0.89 9.87± 0.04 75.23± 6.25 13.12± 0.78 6.11± 0.24

L
EL2
repulsion (Ours) 90.45 ± 1.02 11.16± 0.08 7.94± 0.32 94.40 ± 2.19 9.45± 0.96 6.31± 0.64 93.97± 2.65 11.07± 0.86 7.83± 0.05 93.63 ± 0.42 9.66± 0.58 9.84± 0.23

for both the datasets. Further, it also provides the best FID and Ret-FID as compared to other choices of
repulsion loss. LNL2

repulsion is stands out to be the second best in these metrics for most of the cases. Further,
we observe that across all datasets, the classification unlearning baselines perform very poorly on all metrics
for unlearning in GANs. This tells us that methods proposed for unlearning in classification are not suited
for unlearning in generative tasks. And lastly, we find that few-shot adaptation baselines, give relatively
poor results when compared to the proposed method. This observation indicates that it is not enough to
just adapt the GAN on the positive samples for unlearning, one needs to go further and use additional
regularization to unlearn the undesired features.

For MNIST, we observe in Table 1 that the proposed method with LEL2
repulsion as repulsion loss consistently

provides a PUL of above 95% while giving the best FID and Ret-FID compared to other methods. We
also observe that Extrapolation in parameter space leads to significant PUL albeit the FID and Ret-FID
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are considerably worse compared to proposed method under different repulsion loss. This shows that the
proposed method decently solves the task of unlearning at class-level.

We make similar observations for high-resolution AFHQ dataset as well. One can see that the proposed
method provides highest PUL in all the cases, while maintaining the FID as well as Ret-FID. We observe
highest PUL while unlearning the ‘Cat’ class while lowest PUL is observed in ‘Dog’ class.

Lastly, for feature-level unlearning results on CelebA-HQ, it can be seen that the proposed method with
LEL2

repulsion as repulsion loss consistently provides a PUL of above 90%, illustrating significant unlearning of

undesired features. Further, the FID and Ret-FID using LEL2
repulsion stand out to be the best among all the

methods with significant PUL.

We also observe some drop in FID across all dataset after unlearning. E.g., the FID of the samples generated
by the unlearnt GAN (on Hats) using LEL2

repulsion drops by about 4.15 points while it drops by 4.3 and 6.01

points while using LNL2
repulsion and LIL2

repulsion as compared to the pre-trained GAN. On the other hand,
Extrapolation in parameter space leads to a drop of 6.88 poinits in FID. This further validates the need of
repulsion regularizer to maintain the generation quality. This observation is consistent across all datasets
and features. This supports our claim that extrapolation might unlearn the undesired feature, however, it
deteriorates the quality of generated samples significantly.

Another interesting observation from the above results is that the classification unlearning baselines consis-
tently provide lower PUL, albeit with slightly better FID and Ret-FID. This tells us that these baselines while
capable of unlearning in classification tasks, fail to nudge the generator appropriately for desired unlearning
task. Leading to a suboptimal generator which still generates undesired samples, without compromising on
the quality of the generated samples.

The visual illustration of these methods for AFHQ and CelebA-HQ are shown in figure 2 and figure 3
respectively. Here, we observe that the proposed method effectively unlearns the undesired feature. Moreover,
it can be seen that the unlearning through extrapolation leads to the unlearning of correlated features as
well. E.g. Bangs are correlated with female attributes. It can be seen that the unlearning of Bangs through
extrapolation also leads to the unlearning of female feature which is not desired. However, unlearning through
the proposed method unlearns Bangs only, while keeping the other features as it is. Similar observations
could be made for AFHQ, where extrapolation leads to some minor artifacts in generates samples, whereas
proposed method generates plausible images without any artifacts. Similar visual results for MNIST is
provided in Supplementary Section B. We also provide visualization of random samples generated from
original GAN and the GAN after unlearning in Supplementary Section F to give a qualitative idea of the
generation quality.

Another aspect of unlearning that we explore in our work is the effect of unlearning on other features.
Particularly, unlearning an undesired feature should not disturb the other features. For this we generate
samples from pre-trained and post-unlearning GANs. Then, we calculate the occurrence of specific features
within the two GANs and report the percentage change in these numbers. These results could be found
in Section E of Supplementary. As discussed in Section 3, the approach of first adapting the model to
negative samples followed by applying the repulsion loss during the Unlearning phase can also be extended
to scenarios where curated datasets of positive and negative samples are available. We demonstrate this in
Section D.

5.5 Comparison with DC-GAN Baselines

As previously mentioned, our proposed method operates with high-fidelity GANs. Nonetheless, in addition
to the tailored baselines, a few previous methods aim to unlearn undesired features in more primitive GANs,
such as DC-GANs, on low-resolution images. Notably, the methods proposed in Sun et al. (2023) and Kong &
Chaudhuri (2023) are highly relevant to our work. However, they primarily operate on DC-GAN. To ensure
a fair comparison, we implement our method on DC-GAN and evaluate it against these baselines using
the MNIST dataset (with LEL2

repulsion). Specifically, we compare our approach to the cascaded unlearning
algorithm (CUA) from Sun et al. (2023) and the data redaction method using validity data (DRed) from
Kong & Chaudhuri (2023). Our findings are summarized in Table 4. The results indicate that our method

13



Published in Transactions on Machine Learning Research (02/2025)

Table 4: Comparison of the proposed
method against DC-GAN baselines

Method Metrics Class 1 Class 4 Class 8

CUA
PUL 96.12± 1.21 95.49± 0.37 97.34± 1.21
FID 12.73± 0.48 11.61± 1.81 13.09± 1.03
Ret-FID 11.02± 1.52 11.57± 0.79 10.09± 1.21

DRed
PUL 98.13± 0.12 97.70± 0.26 96.54± 0.23
FID 11.72± 1.29 12.82± 1.11 10.32± 0.82
Ret-FID 8.72± 0.72 8.93± 0.86 10.12± 1.41

Ours
PUL 98.76 ± 0.56 99.18 ± 0.28 98.72 ± 0.42
FID 10.37 ± 0.94 9.72 ± 1.33 10.27 ± 0.82
Ret-FID 6.32 ± 0.43 7.23 ± 1.28 7.66 ± 1.30

Table 5: Effect on PUL (↑), FID (↓), and
Ret-FID (↓) with and without repulsion
loss.

Features Metrics L
′

adv L
′

adv + LEL2

repulsion

Bangs
PUL 79.89 ± 0.49 90.45 ± 1.01
FID 10.06 ± 0.24 11.16 ± 0.08
Ret-FID 8.69 ± 0.04 7.94 ± 0.32

Hat
PUL 84.68 ± 3.89 94.40 ± 2.19
FID 9.66 ± 0.16 9.45 ± 0.96
Ret-FID 6.45 ± 0.08 6.04 ± 0.02

outperforms both baselines across all metrics in all scenarios. All methods performed well on PUL, with
our method achieving the best PUL, followed by DRed and then CUA in most cases. A similar trend is
observed in the FID scores. Although DRed is a close competitor to our proposed method, our approach
yields a significantly better Ret-FID than DRed, suggesting that the post-unlearning GAN using our method
is closer to the gold standard compared to DRed.

5.6 Ablation Study

Lastly, we present the ablation study to observe the effect of repulsion loss. In particular, we see if adapting
the pre-trained GAN only on the positive samples leads to desired levels of unlearning. Our observations on
CelebA-HQ for Bangs and Hats are presented in Table 5. Here, we use LEL2

repulsion as repulsion loss. It can be
seen that only using adversarial loss doesn’t lead to significant unlearning of undesired feature. E.g. using
repulsion loss provides and increase of about 10.56% and 9.72% in PUL. The FID increases by minor 0.66
point on Bangs while it decreases by 0.21 points on Hats. Hence, we conclude that repulsion loss is indeed
crucial for unlearning.

6 Conclusion

We propose a novel unlearning method designed for high-fidelity GANs. Our approach is distinguished via
its unique ability to operate in zero-shot scenario, entirely independent of the original data on which GAN is
trained. We operate under feedback-based framework in two stages. The initial stage adapts the pre-trained
GAN on the negative samples whereas the later stage unlearns the undesired feature by adapting on positive
samples along with a repulsion regularizer. A notable advantage of our approach is its capability to conduct
the unlearning process without significantly impacting other desirable features. We firmly believe that our
work represents a substantial advancement in the field of unlearning within deep generative models. This
progress holds particular relevance in addressing critical societal concerns, particularly those related to the
generation of biased, racial, or harmful content by these models.

Limitation and Future Work: We note that our study does not address aspects like ‘toxicity’ due to the
absence of annotated datasets with explicit characteristics. Despite this limitation, it’s crucial to emphasize
that our explored features are subtle and interconnected. For example, subtle details like hairstyles (e.g.,
bangs) are strongly linked to gender, and characteristics like baldness correlate with physical appearance,
also associated with gender. Additionally, attributes such as hats and eyeglasses are tied to accessories.
Though not the primary focus for unlearning, these features hold potential utility for such purposes.

In future, we aspire to provide rigorous theoretical guarantees to such methods making them more dependable
and safe for deployment. Moreover, the approach proposed in this work is inherently generic and can be
applied to any model exhibiting parameter-space semantics. This opens up the possibility of extending such
techniques to more powerful generative models, such as Diffusion models and Flow-based models. However,
applying this method to iterative models like diffusion models would require a thorough investigation of their
parameter-space semantics. Additionally, developing an effective strategy for negative adaptation in these
models remains an open research challenge, unlike GANs, where few-shot generative adaptation is relatively
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well-studied. Nonetheless, this represents a promising avenue for modern generative models, and we leave
this exploration for future research.

Broader Impact Statement

Machine unlearning has emerged as a crucial tool for addressing privacy concerns and mitigating harmful
biases in AI systems. Our method advances this field by enabling selective feature removal from pre-trained
GANs without requiring access to the original training data. This capability is particularly valuable for
correcting deployed models that may generate problematic or biased content, making AI systems more
ethical and socially responsible. While our approach currently focuses on GANs, its success demonstrates
the potential for developing similar techniques for other generative models, contributing to the broader goal
of creating AI systems that can be refined and corrected post-deployment to better serve society’s needs.

Acknowledgements

This work was supported (in part for setting up the GPU compute) by the Indian Institute of Science through
a start-up grant. Piyush is supported by Government of India via Prime Minister’s Research Fellowship.
Atri contributed to this work as part of Uplink: IKDD Research Internship Program. Subhodip is supported
by MOE Fellowship. Prathosh is supported by Infosys Foundation Young investigator award.

References

Adekanmi Adeyinka Adegun, Serestina Viriri, and Jules-Raymond Tapamo. Review of deep learning methods
for remote sensing satellite images classification: experimental survey and comparative analysis. Journal
of Big Data, 10(1):93, 2023.

TMartin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
Proc. of ICML, 2017.

John E Ball, Derek T Anderson, and Chee Seng Chan. Comprehensive survey of deep learning in remote
sensing: theories, tools, and challenges for the community. Journal of applied remote sensing, 11(4):
042609–042609, 2017.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proc. of ICML, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In Proc. of IEEE
Symposium on Security and Privacy, 2015.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine learning. In
Proc. of NIPS, 2000.

Pedro Celard, EL Iglesias, JM Sorribes-Fdez, Rubén Romero, A Seara Vieira, and L Borrajo. A survey
on deep learning applied to medical images: from simple artificial neural networks to generative models.
Neural Computing and Applications, 35(3):2291–2323, 2023.

Anton Cherepkov, Andrey Voynov, and Artem Babenko. Navigating the gan parameter space for semantic
image editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3671–3680, 2021.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2020.

Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza, Ryan Cohn, Cheol Woo
Park, Alok Choudhary, Ankit Agrawal, Simon JL Billinge, et al. Recent advances and applications of deep
learning methods in materials science. npj Computational Materials, 8(1):59, 2022.

15



Published in Transactions on Machine Learning Research (02/2025)

Rishav Chourasia and Neil Shah. Forget unlearning: Towards true data-deletion in machine learning. In
Proc. of ICML, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforce-
ment learning from human preferences. Advances in neural information processing systems, 30, 2017.

Vikram S Chundawat1, Ayush K Tarun1, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
unlearning. IEEE Transactions on Information Forensics and Security, 2023.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in Neural
Information Processing Systems, 34:3451–3465, 2021.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y. Zou. Making ai forget you: Data deletion in
machine learning. In Proc. of NIPS, 2019.

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam Kumaraguru.
Towards adversarial evaluations for inexact machine unlearning. arXiv preprint, 2022.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In Proc. of ECCV, 2020a.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In Proc. of CVPR, 2020b.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-
privacy forgetting in deep networks. In Proc. of CVPR, 2021.

E. Goldman. An introduction to the california consumer privacy act (ccpa). Santa Clara Univ. Legal Studies
Research Paper, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Proc. of NeuRIPS, 2014.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proc. of AAAI, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal from
machine learning models. In Proc. of ICML, 2020.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern analysis and
machine intelligence, 12(10):993–1001, 1990.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. of NeuRIPS,
2020.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger. Snapshot
ensembles: Train 1, get m for free. In International Conference on Learning Representations, 2016.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and Sijia
Liu. Model sparsification can simplify machine unlearning. arXiv preprint, 2023.

Sen Jia, Shuguo Jiang, Zhijie Lin, Nanying Li, Meng Xu, and Shiqi Yu. A survey: Deep learning for
hyperspectral image classification with few labeled samples. Neurocomputing, 448:179–204, 2021.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support vector
machines. In Proc. of NIPS, 2009.

Tero Karras, Timo Aila, and Samuli Laine. A style-based generator architecture for generative adversarial
networks. In Proc. of CVPR, 2018a.

16



Published in Transactions on Machine Learning Research (02/2025)

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. In Proc. of ICLR, 2018b.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In Proc. of CVPR, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34:
852–863, 2021.

Zhifeng Kong and Kamalika Chaudhuri. Data redaction from pre-trained gans. In 2023 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML), pp. 638–677. IEEE, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Nathan Lambert, Louis Castricato, Leandro von Werra, and Alex Havrilla. Illustrating reinforcement learning
from human feedback (rlhf). Hugging Face Blog, 2022. https://huggingface.co/blog/rlhf.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hyuk-Gi Lee, Gi-Cheon Kang, Chang-Hoon Jeong, Han-Wool Sul, and Byoung-Tak Zhang. C3: Contrastive
learning for cross-domain correspondence in few-shot image generation. In Proceedings of Workshop on
Controllable Generative Modeling in Language and Vision (CtrlGen) at NeurIPS 2021, 2021.

Esther Levin, Naftali Tishby, and Sara A Solla. A statistical approach to learning and generalization in
layered neural networks. Proceedings of the IEEE, 78(10):1568–1574, 1990.

Yijun Li, Richard Zhang, Jingwan (Cynthia) Lu, and Eli Shechtman. Few-shot Image Generation with
Elastic Weight Consolidation. In Proc. of NeurIPS, 2020.

Zhichao Liu, Luhong Jin, Jincheng Chen, Qiuyu Fang, Sergey Ablameyko, Zhaozheng Yin, and Yingke Xu. A
survey on applications of deep learning in microscopy image analysis. Computers in biology and medicine,
134:104523, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), 2015.

Zhuo Ma, Yang Liu, Ximeng Liu, Jian Liu, Jianfeng Ma, and Kui Ren. Learn to forget: Machine unlearning
via neuron masking. In Proc. of IEEE Transactions on Dependable and Secure Computing, 2022.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models
of learning and memory. Psychological review, 102, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of learning and motivation, 24:109–165, 1989.

Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the Discriminator: a Simple Baseline for Fine-Tuning
GANs. In CVPR AI for Content Creation Workshop, 2020.

Arnab Kumar Mondal, Piyush Tiwary, Parag Singla, and AP Prathosh. Few-shot cross-domain image
generation via inference-time latent-code learning. In The Eleventh International Conference on Learning
Representations, 2022.

Saemi Moon, Seunghyuk Cho, and Dongwoo Kim. Feature unlearning for pre-trained gans and vaes. arXiv
preprint, 2023.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for ma-
chine unlearning. In Proc. of ALT, 2021.

17



Published in Transactions on Machine Learning Research (02/2025)

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning. In Proc.
of NIPS, 2020.

Quoc Phong Nguyen, Ryutaro Oikawa, Dinil Mon Divakaran, Mun Choon Chan, and Bryan Kian Hsiang
Low. Markov chain monte carlo-based machine unlearning: Unlearning what needs to be forgotten. In
Proc. of ASIA CCS, 2022a.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and Quoc
Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint arXiv:2209.02299, 2022b.

A. Noguchi and T. Harada. Image Generation From Small Datasets via Batch Statistics Adaptation. In
Proc. of ICCV, 2019.

Utkarsh Ojha, Yijun Li, Cynthia Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, and Richard Zhang.
Few-shot image generation via cross-domain correspondence. In Proc. of CVPR, 2021.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in neural information processing systems, 32, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what you
want to forget: Algorithms for machine unlearnings. In Proc. of NeurIPS, 2021.

Yan Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
Proc. of NeuRIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In Proc. of ICLR, 2021.

Hui Sun, Tianqing Zhu, Wenhan Chang, and Wanlei Zhou. Generative adversarial networks unlearning.
arXiv preprint arXiv:2308.09881, 2023.

Piyush Tiwary, Kinjawl Bhattacharyya, and Prathosh A.P. Cycle consistent twin energy-based models for
image-to-image translation. Medical Image Analysis, 91:103031, 2024a. ISSN 1361-8415. doi: https://
doi.org/10.1016/j.media.2023.103031. URL https://www.sciencedirect.com/science/article/pii/

S1361841523002918.

Piyush Tiwary, Kumar Shubham, Vivek V Kashyap, and Prathosh AP. Bayesian pseudo-coresets via
contrastive divergence. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024b. URL
https://openreview.net/forum?id=SHsR2VOOKv.

Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. Advances in Computer Vision and
Pattern Recognition. Springer, 2017.

Gaël Varoquaux and Veronika Cheplygina. Machine learning for medical imaging: methodological failures
and recommendations for the future. NPJ digital medicine, 5(1):48, 2022.

P. Voigt and A.Von dem Bussche. The EU general data protection regulation (GDPR). Springer, 2017.

18

https://www.sciencedirect.com/science/article/pii/S1361841523002918
https://www.sciencedirect.com/science/article/pii/S1361841523002918
https://openreview.net/forum?id=SHsR2VOOKv


Published in Transactions on Machine Learning Research (02/2025)

Johannes Von Oswald, Seijin Kobayashi, Joao Sacramento, Alexander Meulemans, Christian Henning, and
Benjamin F Grewe. Neural networks with late-phase weights. In International Conference on Learning
Representations, 2020.

Xinya Wang, Qian Hu, Yingsong Cheng, and Jiayi Ma. Hyperspectral image super-resolution meets deep
learning: A survey and perspective. IEEE/CAA Journal of Automatica Sinica, 10(8):1664–1687, 2023.

Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel Gonzalez-Garcia, and Bogdan Radu-
canu. Transferring GANs: generating images from limited data. In Proc. of ECCV, 2018.

Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, and Joost van de
Weijer. MineGAN: effective knowledge transfer from GANs to target domains with few images. In Proc.
of CVPR, 2020.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for robust-
ness and uncertainty quantification. Advances in Neural Information Processing Systems, 33:6514–6527,
2020.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of generaliza-
tion. Advances in neural information processing systems, 33:4697–4708, 2020.

Ga Wu, Masoud Hashemi, and Christopher Srinivasa. Puma: Performance unchanged model augmentation
for training data removal. In Proc. of AAAI, 2022.

Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. Deltagrad: Rapid retraining of machine learning
models. In Proc. of ICML, 2020a.

Yinjun Wu, Val Tannen, and Susan B. Davidson. Priu: A provenance-based approach for incrementally
updating regression models. In Proc. of SIGMOD, 2020b.

Jiayu Xiao, Liang Li, Chaofei Wang, Zheng-Jun Zha, and Qingming Huang. Few shot generative model adap-
tion via relaxed spatial structural alignment. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11204–11213, 2022.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1492–1500, 2017.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A survey. ACM
Computing Surveys Vol. 56, No. 1, 2020.

Biyun Yang and Yong Xu. Applications of deep-learning approaches in horticultural research: a review.
Horticulture Research, 8, 2021.

Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu, Xin Jin, Mingli Song, and Xinchao Wang.
Learning with recoverable forgetting. In Proc. of ECCV, 2022.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F. Chris-
tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. CoRR, abs/1909.08593,
2019. URL http://arxiv.org/abs/1909.08593.

19

http://arxiv.org/abs/1909.08593


Published in Transactions on Machine Learning Research (02/2025)

A Training Details

Here, we provide the details pertaining to the proposed method. Specifically, we provide the details of
the pre-trained GANs and pre-trained Classifiers used in the proposed method. We also provide details
pertaining to the training strategy used during Unlearning. All the experiments are performed on RTX-
A6000 GPUs with 48GB memory. Our code and implementation is available at: https://github.com/

atriguha/Adapt_Unlearn.

A.1 Details of Pre-trained GAN

As mentioned in the main text, we use the famous StyleGAN2 architecture to obtain the pre-trained GAN.
We use the open-source pytorch repository2 for implementation. We resize the MNIST images to 32×32 and
CelebA-HQ images to 256×256 to fit in the StyleGAN2 architecture. The latent space dimension for MNIST
and CelebA-HQ is consequently set to 128 × 1 and 512 × 1. We train the GAN using the non-saturating
adversarial loss along with path-regularization for training. We use default optimizers and hyperparameters
as provided in the code for training. We train the GAN for 2 × 105 and 3.6 × 105 epochs for MNIST and
CelebA-HQ respectively.

A.2 Details of Pre-trained Classifiers

We use pre-trained classifiers to simulate the process of obtaining the feedback. More specifically, the
feedbacks (positive and negative samples) are obtained by passing the generated samples (from the pre-
trained GAN) through these pre-trained classifiers. The classifier classifies the generated samples into positive
and negative samples. Furthermore, the classifiers are also employed for obtaining the evaluation metrics as
discussed in Section-4.3 of the main text.

MNIST: We use simple LeNet model (LeCun et al., 1998) for classification among different digits of MNIST
dataset3. The model is trained with a batch-size of 256 using Adam optimizer with a learning rate of
2× 10−3, β1 = 0.9 and β2 = 0.999. The model is trained for a resolution of 32× 32 same as the pre-trained
GAN for 12 epochs. After training the classifier has an accuracy of 99.07% on the test split of MNIST dataset.

CelebA-HQ: We use ResNext50 model (Xie et al., 2017) for classification among different facial attributes
contained in CelebA4. Note that we train the classifier on normal CelebA as the ground truth values are
available for it. The classifier is trained with a batch-size of 64 using Adamax optimizer with a learning rate
of 2× 10−3, β1 = 0.9 and β2 = 0.999. The model is trained for a resolution of 256× 256 for 10 epochs. We
also employ image augmentation techniques such as horizontal flip, image resize, and cropping to improve
the performance of the classifier. The trained model exhibits a test accuracy of 91.93%.

A.3 Unlearning Hyper-parameters

Here we mention the hyper-parameters pertaining to the proposed negative adaptation and unlearning stages.
As mentioned, we use an EWC regularizer during adaptation to avoid overfitting. The value of λ (Eq.3) is
set to 5× 108 for all the experiments. Further, γ (Eq.5) is chosen between 0.1, 1 and 10 when LIL2

repulsion and

LNL2
repulsion are chosen as repulsion loss. It is varied between 10 and 500 when LEL2

repulsion is chosen as repulsion

loss. Further, the value of α for LEL2
repulsion (Eq.7) is varied between 0.1 and 0.001. These values are chosen

and adjusted to ensure that both the loss components L
′

adv and Lrepulsion are minimized properly.

A.4 Details of Baselines

Here, we present the details pertaining to the baselines presented in Table 1, 2, 3.

2https://github.com/rosinality/stylegan2-pytorch
3https://github.com/csinva/gan-vae-pretrained-pytorch/tree/master/mnist_classifier
4https://github.com/rgkannan676/Recognition-and-Classification-of-Facial-Attributes/
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EU-k and CF-k (Goel et al., 2022) propose to train just the last k layers of the model from scratch (in
EU-k) or from pre-trained initialization (in CF-k) for unlearning on the positive samples. We employ the
same strategy to GANs directly with k = 10 layers. Further, ℓ1-sparse (Jia et al., 2023) proposes to use
sparse weights for fine-tuning to unlearn the undesired features. To this end, they propose to use ℓ-1
regularization while fine-tuning. Hence, for our case, we fine-tune the model on positive samples by adding
an ℓ-1 regularization on weights of the network.

For the few-shot adaptation baselines, we directly employ the provided open-source codebase of CDC5 and
RSSA6 for adaptation on positive samples to obtain results.

B MNIST Qualitative Results

We present visual illustration of images generated after unlearning using various methods in figure 4. Here,
we unlearn class of digits 1, 4, and 8. We observe that all the proposed methods effectively unlearn the
undesired classes. Moreover, it can be seen that although extrapolation leads to unlearning, it does so at
the expense of the quality of the generated images. In contrast, the quality of the generated images after
unlearning using the proposed method leads to unlearning with plausible image quality. We refer the reader
the reader to main text for quantitative evaluation.

C
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ss
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ss
 4

C
la

ss
 8

Original Samples Extrapolation

Figure 4: Results of Unlearning undesired feature (class) via different methods. The undesired class contains
digits 1(top row), 4(second row), 8 (bottom row).

C Proofs

Proof of Theorem 1. The said objective function is given by-

min
θP

max
φ

E
x∼pX

G\N

[log Dφ(x)] + E
z∼pZ

θ∼pΘ

U

[log(1−Dφ(Gθ(z)))] + Lrepulsion

≡ min
θP

max
φ

E
x∼pX

G\N

[log Dφ(x)] + E
x∼pX

U

[log(1−Dφ(x))] + Lrepulsion (9)

Since ϕ depends only on the first two terms of Eq. 9, the optimal discriminator as obtained in Goodfellow et al.

(2014) is given as Dφ∗ =
pX

G\N

pX
G\N

+pX
U

. Substituting this in Eq. 9 and using standard results from Goodfellow

et al. (2014) gives -

min
θP

DJSD(pX
G\N ♣♣p

X
U ) + Lrepulsion (10)

5https://github.com/utkarshojha/few-shot-gan-adaptation
6https://github.com/StevenShaw1999/RSSA
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

Lrepulsion = LIL2
repulsion



: Since pΘ
N (θ) = 1

♣2πΣ♣d/2
exp

[

1
2 (θ − θN )T Σ−1(θ − θN )

]

and pΘ
U (θ) =

1
♣2πΣ♣d/2

exp
[

1
2 (θ − θP )T Σ−1(θ − θP )

]

are both Gaussian distributions, then DKL(pΘ
U ♣♣p

Θ
N ) = ∥θP−θN∥

2 =⇒

[DKL(pΘ
U ♣♣p

Θ
N )]−1 = 1

∥θP −θN ∥2 = LIL2
repulsion. Substituting in the above we get -

min
θP

DJSD(pX
G\N ♣♣p

X
U ) + [DKL(pΘ

U ♣♣p
Θ
N )]−1 (11)



Lrepulsion = LNL2
repulsion



: Similar to above argument, DKL(pΘ
U ♣♣p

Θ
N ) = ∥θP − θN∥

2 =⇒ −DKL(pΘ
U ♣♣p

Θ
N ) =

−∥θP − θN∥
2 = LNL2

repulsion. Substituting in the above we get -

min
θP

DJSD(pX
G\N ♣♣p

X
U )−DKL(pΘ

U ♣♣p
Θ
N ) (12)



Lrepulsion = LEL2
repulsion



: Again, since pΘ
N and pΘ

U follow Gaussian distribution, the Hellinger divergence

between two Gaussian distribution is a shifted negative Manhabolis distance between the means of the two
distributions, i.e., DH(pΘ

U ♣♣p
Θ
N ) = 1 − exp (−∥θP − θN∥

2) =⇒ 1 − DH(pΘ
U ♣♣p

Θ
N ) = exp (−∥θP − θN∥

2) =
LEL2

repulsion. Substituting in above we get -

min
θP

DJSD(pX
G\N ♣♣p

X
U )−DH(pΘ

U ♣♣p
Θ
N ) + 1 (13)

≡ min
θP

DJSD(pX
G\N ♣♣p

X
U )−DH(pΘ

U ♣♣p
Θ
N ) (14)

This completes the proof of all the three statements.

Proof of Claim 1. For a given latent vector, θ → Gθ(z) is a map from parameter space to generated sample
in the data space. Hence, we can use data-processing inequality to obtain -

Df (pX
U ♣♣p

X
N ) ≤ Df (pΘ

U ♣♣p
Θ
N ) (15)

=⇒ DJSD(pX
G\N ♣♣p

X
U )−Df (pΘ

U ♣♣p
Θ
N ) ≤ DJSD(pX

G\N ♣♣p
X
U )−Df (pX

U ♣♣p
X
N ) (16)

This completes the proof.

D Results with Curated Datasets

As explained in the main paper, our method requires users to identify or annotate negative samples under
feedback-based framework. This annotation is used to adapt the GAN to negative samples during the
Negative Adaptation phase and subsequently retrain it on positive samples during the Unlearning phase.
While human feedback is one approach to obtain these samples, curated datasets of positive and negative
samples can also serve this purpose.

Curating datasets, however, can be challenging, particularly when the feature, concept, or class to be un-
learned is subtle or complex and not readily available in standard datasets. In such cases, users may need to
create a custom dataset. By contrast, our human-feedback approach involves annotating samples generated
by the GAN, reducing the need for external dataset creation. Nevertheless, if a curated dataset of positive
and negative samples is available, our method can be seamlessly adapted to utilize it.

To demonstrate this, we conduct experiments on all three datasets (MNIST, AFHQ, and CelebA-HQ) using
curated dataset samples in both the Negative Adaptation and Unlearning phases. Specifically, for the
Negative Adaptation phase, we use samples from the original dataset that were pre-annotated with the
undesired feature or label. For instance, in the CelebA-HQ dataset, we selected all samples with a positive
label for the undesired feature (e.g., Bangs). The GAN is then adapted to these samples using the training
objective described in Section 3.2 (Eq. 1 of the main paper) to obtain the parameters θN . In the Unlearning
phase, the GAN was retrained on the remaining dataset samples using the objective described in Section 3.3
(Eq. 4).
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We performed these experiments on MNIST (unlearning ‘Class 8’), AFHQ (unlearning ‘Cat’), and CelebA-
HQ (unlearning ‘Bangs’). The results of these experiments are summarized in Table 6, comparing the
performance of using curated dataset samples against GAN-generated samples.

Table 6: Comparison of results using curated dataset samples versus GAN-generated samples for negative
adaptation. PUL (↑), FID (↓), and Ret-FID (↓).

Method MNIST (Class 8) AFHQ (Cat) CelebA-HQ (Bangs)
PUL FID Ret-FID PUL FID Ret-FID PUL FID Ret-FID

w/ dataset samples 97.30± 1.20 7.79± 0.86 10.7± 0.52 94.26± 1.08 11.88± 0.81 6.13± 1.66 90.40± 0.91 10.04± 0.49 6.05± 1.25
w/ GAN samples (using LEL2

repulsion) 95.22± 0.34 8.80± 0.52 5.68± 0.10 95.76± 0.25 16.50± 0.12 8.17± 0.14 90.45± 1.02 11.16± 0.08 7.94± 0.32

As shown in Table 6, using curated dataset samples during the Negative Adaptation phase achieves per-
formance comparable to that of GAN-generated samples. This demonstrates the flexibility of our method,
allowing users to choose the most convenient approach depending on the availability of datasets. These
results will be included in the supplementary material to provide further clarity on this point.

E Effect on other features after Unlearning

As previously discussed, the unlearning procedure aims to exclusively erase undesired features without
impacting other features. Consequently, it becomes imperative to assess whether the unlearning process
exerts any influence on other features. To address this concern, we introduce plots illustrating the percentage
change in the presence of other features.

Specifically, we undertake the generation of 15, 000 random samples from both the pre-trained GAN and the
GAN after the unlearning procedure. Subsequently, employing the pre-trained classifiers (for comprehensive
details, please refer to the Supplementary), we calculate the occurrence of specific features within the two
GANs. We report the percentage change in these numbers to demonstrate how has the unlearning process
affected this feature. Hence, a lower percentage change is better as it means that the other features are
not affected after unlearning. This experiment is repeated across multiple features, and our findings after
unlearning Bangs in CelebA-HQ are depicted in figure 5. We observe that for all the features, unlearning via
extrapolation leads to significant changes in other features. Whereas, unlearning via the proposed method
leads to minor changes in the features. For instance, since Bangs are highly correlated with gender, we
observe that unlearning Bangs via extrapolation leads to an increase in Males. However, unlearning via the
proposed method leads to minor changes in the number of samples with Male features. This shows that
the proposed method is effective in erasing the undesired feature while preserving other features. It can be
observed that in majority of the cases, extrapolation leads to significant change in the features, indicating
that unlearning via extrapolation leads to significant change in other features as well. This also indicates
that extrapolation leads to unlearning of several correlated features. On the other hand, we observe that
unlearning using the proposed method with LEL2

repulsion gives the least change in most of the cases. This
illustrates the efficacy of the proposed method in preserving features other than the unlearnt feature.
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(a) Unlearnt feature: Bald
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(b) Unlearnt feature: Bangs
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(c) Unlearnt feature: Hats
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(d) Unlearnt feature: Eyeglasses

Figure 5: Percentage (%) change in several features after unlearning specific features. A lower percentage
change denotes that the method has successfully preserved that feature after unlearning. Here, we clip the
bar to 100% if the percentage change in that feature is more than 100% to make the plots legible.

F Visualization of Generated samples

Here, we provide visualization of random samples generated from the original GAN and the GAN after
unlearning to give an intuitive/qualitative idea of generation quality. We provide the results by using
LEL2

repulsion as it gives the best performance in most of the cases. These results are presented for all the
datasets in figure 6, 7, 8. While the results in Section 5.4 provide quantitative idea of generation quality,
these visualizations provide qualitative idea of the same.
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Original GAN Class 1 Class 4 Class 8

Figure 6: Visualization of random MNIST samples generated before and after unlearning.

Original GAN Cat

Dog Wild

Figure 7: Visualization of random AFHQ samples generated before and after unlearning.

25



Published in Transactions on Machine Learning Research (02/2025)

Original GAN

Bangs Hats

Bald head Eyeglass

Figure 8: Visualization of random CelebA-HQ samples generated before and after unlearning.
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